About Us

DC Event Lighting and Sound is a full-service provider for lighting, staging and sound solutions to the special event industry catering to the greater Washington D.C., Virginia and Maryland areas.

What We Do

Planning a corporate event? Our rental department has what you need to flawlessly execute your next corporate resentation, product launch and more. Inquire with DCELS about rojector rentals, pipe and base, uplighting, branded corporate gobo, and more.

Contact Us

Contact us today to find out how we can offer
the best service and pricing to your next special

Basic concept

A typical sound reinforcement system consists of;input transducers (e.g., microphones), which convert sound energy into an electric signal, signal processors which alter the signal characteristics,amplifiers, which add power to the signal without otherwise changing its content, and output transducers (e.g., loudspeakers), which convert the signal back into sound energy. These primary parts involve varying amounts of individual components to achieve the desired goal of reinforcing and clarifying the sound to the audience, performers, or other individuals.

Signal path

Sound reinforcement in a large format system typically involves a signal path that starts with an instrument pickup or a microphone (transducer) which is plugged into a multicore cable (often called a "snake"). The snake then routes the signals of all of the inputs on two mixing consoles: Front of the House (FOH) Main mix, and Monitor mix at the side of the stage. Once the signal is at a channel on the console, this signal can be equalized, compressed, or panned before being routed to an output bus. The signal may also be routed into an external effects processor, which outputs a wet (effected) version of the signal, which is typically mixed in varying amounts with the dry (ineffected) signal.

The signal is then routed to a bus, also known as a mix group, subgroup or simply 'group'. A group of signals may be routed through an additional bus before being sent to the main bus to allow the engineer to control the levels of several related signals at once. For example, all of the different microphones for a drum set might be sent to their own bus so that the volume of the entire drum set sound can be controlled with a single fader or a pair of faders. A bus can often be processed just like an individual input channel, allowing the engineer to process a whole group of signals at once. The signal is then typically routed with everything else to the stereo masters on a console. Mixing consoles also have additional sends, also referred to as auxes, on each input channel so that a different mix can be created and sent elsewhere.

The next step in the signal path generally depends on the size of the system in place. In smaller systems, the main outputs are often sent to an additional equalizer, or directly to a power amplifier, with one or more loudspeakers (typically two) then connected to that amplifier. In large-format systems, the signal is typically first routed through an equalizer then to a crossover. A crossover splits the signal into multiple frequency bands with each band being sent to separate amplifiers and speaker enclosures for low, middle, and high-frequency signals. Low-frequency sounds are sent to subwoofers, and middle and high-frequency sounds are typically sent to full-range speaker cabinets.